Senin, 05 Januari 2009

RESEP AWET MUDA

Jika anda ingin panjang umur anda disarankan untuk menghabiskan waktu lebih lama dengan generasi yang lebih muda, menurut penelitian tentang binatang yang dirilis minggu ini. (apa hubungannya yah??).


Penelitian tentang binatang ini dipublikasikan oleh Proceedings of the National Academy of Sciences ternyata juga memberi informasi untuk perawatan penyakit yang berkaitan dengan usia manusia. Peneliti dari University of Iowa, mempelajari perilaku lalat buah mutan berumur pendek yang ditempatkan bersama lalat muda yang bukan mutasi.

Mereka juga memasangkan lalat buah mutasi tua dengan lalat buah mutasi yang lebih muda pada tempat lain. Mereka menemukan bahwa lalat yang ditempatkan bersama lalat muda bukan mutasi hidup dua kali lebih panjang daripada yang ditempatkan dengan mutan lain.

Uji selanjutnya juga menunjukkan bahwa mutan yang ditempatkan bersama lalat buah muda non mutan mempunyai respon fisik yang meningkat dan daya adaptasi yangg lebih baik daripada lalat buah mutan yang tetap bersama mutan.


Merasa Muda
Menurut penulis utama paper, Professor Chun-Fang Wu, hasil ini menunjukkan bahwa interaksi sosial dengan anggota spesies yang lebih muda memberi keuntungan psikologi pada lalat buah mutan. Namun dari percobaan ini mekanisme yang menyebabkan fenomena ini belumlah jelas. Wu berspekulasi bahwa interaksi sosial dengan generasi muda membantu lalat buah mengkompensasi kerusakan genetis yang membuat serangga rawan terhadap penuaan karena stres.

Hal ini mungkin berimplikasi pada kesehatan manusia, karena mutasi enzimatik kode genetis serangga mencerminkan kekurangan yang terjadi pada penyakit Parkinson, Huntington dan Alzheimer.

"Penelitian ini menunjukkan bahwa waktu hidup lalat buah fleksibel dan dapat dikondisikan dengan interaksi sosial. Hal menguatkan dugaan bahwa manusia yang menderita penyakit neurologik yang menyangkut usia mungkin diuntungkan dengan lingkungan sosial yang sesuai," tulis penulis.

METODE BARU PENDORONG PESAWAT RUANG ANGKASA

ScienceDaily – Dalam film Star Wars tidak pernah nampak sekalipun pesawat-pesawat antar bintang digerakkan dengan roket. Bahkan dalam film tersebtu kita jumpai sebuah pesawat kemudi tunggal yang ukurannnya kecil bisa lepas landas dari sebuah planet kemudian sampai ke luar angkasa dan kemudian bergerak dengan warp-speed menuju sistem bintang lain.
Meskipun itu hanya dalam sebuah film, ternyata beberapa waktu yang lalu beberapa peneliti dari NASA Amerika menemukan sebuah metode baru pendorong pesawat luar angkasa yang tidak memakai tenaga roket. Sistem pendorong tersebut diberi nama M2P2 (Mini-Magnetospheric Plasma Propulsion). Para ilmuwan Universitas Washington meyakini, sistem M2P2 tersebut bisa memberikan daya dorong yang sangat besar pada pesawat, bahkan sampai 10 kali kecepatan pesawat luar angkasa saat ini.

NASA Institute for Advanced Concepts beberapa waktu yang lalu memberikan hibah sebesar $500.000 kepada tim UW yang dikepalai oleh ahli geofisika Robert Winglee untuk melanjutkan riset tentang Mini-Magnetospheric Plasma Propulsion. Bila kerja laboratorium dan pengujian luar angkasa sukses, dia mengharapkan dalam 10 tahun pesawat yang ditenagai dengan M2P2 bisa diluncurkan, yang akan menjadi pesawat pertama yang akan meninggalkan sistem Tata Surya.

Meskipun hal itu memerlukan kerja keras, dengan memperhatikan pesawat luar angkasa yang kita luncurkan dengan Voyager 1 pada tahun 1977 sekarang berjarak 6,8 juta mil dari bumi, yang masih dalam lingkungan Tata Surya.


Winglee, seorang Lektor geofisika, telah mengerjakan M2P2 selama 9 bulan bersama dengan profesor geofisika George Parks dan John Slough, seorang Lektor riset pada aeronautika dan astronautika. Mereka mengembangkan sebuah prototip dan menyiapkan pengujian di Laboratorium Redmond Plasma Physics UW.
Sistem mereka akan menggunkan sebuah kamar plasma seukuran 10 x 10 inch, yang dikaitkan pada sebuah pesawat. Sel-sel surya dan koil-koil solenoid akan memberi tenaga dengan menciptakan plasma termagnetisasi dengan rapat, atau gas terionkan, yang akan melontarkan sebuah medan elektromagnet sejauh radius 10 – 12 mil di sekeliling pesawat. Medan magnet tersebut akan berinteraksi dengan angin matahari sehingga mucul gaya dorong.

Pembuatan medan magnet ini serupa dengan pembentangan sebuah layar raksasa yang akan didorong oleh angin matahari, yang bergerak dengan kecepatan 780.000 sampai 1,8 juta mil per jam. Itu adalah energi yang cukup untuk menggerakkan pesawat luar angkasa seberat 300 pon pada kecepatan sampai 180.000 mil per jam atau 4,3 juta mil per hari. Sementara pesawat ulang alik saat ini terbang dengan kecepatan hanya 18.000 mil per jam atau 430.000 mil per hari.
Pada kecepatan tersebut, pesawat luar angkasa yang ditenagai M2P2 yang diluncurkan hari ini akan mencapai Voyager 1 dalam 8 tahun, sementara Voyager 1 sendiri perlu waktu 22 tahun untuk mencapai posisinya sekarang (publikasi ini ditulis tahun 1999). Ide pembuatan M2P2 muncul dari penelitian jet plasma yang terbentuk di sekitar bintang muda, dan direalisasikan dengan didanai oleh NASA.


Sistem tersebut memiliki nilai keuntungan melebihi layar matahari (solar sail), yang ukurannya sangat besar, lembaran material tipis reflektif seperti Mylar yang mampu menjadikan cahaya matahari menjadi gaya dorong. Tabung plasma M2P2 jauh lebih ringan dan ramping daripada layar matahari. Hanya butuh tenaga beberapa kilowatt saja dengan tambahan 100 pon propelan. Meskipun alat ini tergolong mahal, namun dengannya akan sangat menghemat biaya keseluruhan misi dan akan mempermudah akses ke planet-planet, begitu kata Winglee.


Meski demikian, masih banyak pula orang yang mengatakan, “Itu masih kurang cepat.” (karena mereka sudah tercekoki dengan film Star Trek). Orang-orang tersebut menginginkan sebuah kecepatan warp sehingga mereka bisa pergi ke sistem tata surya yang lain. Akan tetapi, warp drive pada Star Trek dan pendorong hyperdrive pada film Star Wars, yang keduanya bisa mencapai kecepatan cahaya (186.000 mil per detik dalam vakum), tidak mungkin dicapai dengan pemahaman sekarang akan hukum-hukum fisika.


Untuk sekarang, setidaknya, pendorong plasma mampu menjadi pilihan terbaik untuk sistem pendorong fiksi. Jika pengujian M2P2 berhasil, Winglee mengharapkan penggunaan perdana mesin tersebut akan segera tergapai.

ANGKA KEREN

Tau gak ??
Ternyata angka-angka yang biasa kita kenal dan kita pake sehari-hari ternyata membetuk pola yang keren!!!
Gak percaya??
Silakan dilihat!!!

1 x 8 + 1 = 9
12 x 8 + 2 = 98
123 x 8 + 3 = 987
1234 x 8 + 4 = 9876
12345 x 8 + 5 = 98765
123456 x 8 + 6 = 987654
1234567 x 8 + 7 = 9876543
12345678 x 8 + 8 = 98765432
123456789 x 8 + 9 = 987654321

1 x 9 + 2 = 11
12 x 9 + 3 = 111
123 x 9 + 4 = 1111
1234 x 9 + 5 = 11111
12345 x 9 + 6 = 111111
123456 x 9 + 7 = 1111111
1234567 x 9 + 8 = 11111111
12345678 x 9 + 9 = 111111111
123456789 x 9 +10= 1111111111

9 x 9 + 7 = 88
98 x 9 + 6 = 888
987 x 9 + 5 = 8888
9876 x 9 + 4 = 88888
98765 x 9 + 3 = 888888
987654 x 9 + 2 = 8888888
9876543 x 9 + 1 = 88888888
98765432 x 9 + 0 = 888888888

Keren kan!!!!
Sekarang coba liat keajaiban simetris dari angka-angka ini:

1 x 1 = 1
11 x 11 = 121
111 x 111 = 12321
1111 x 1111 = 1234321
11111 x 11111 = 123454321
111111 x 111111 = 12345654321
1111111 x 1111111 = 1234567654321
11111111 x 11111111 = 123456787654321
111111111 x 111111111=12345678987654321

12345679 X 9 = 11111111
12345679 X 18 = 22222222
12345679 X 27 = 33333333
12345679 X 36 = 44444444
12345679 X 45 = 55555555
12345679 X 54 = 66666666
12345679 X 63 = 77777777
12345679 X 72 = 88888888
12345679 X 81 = 99999999

Luar biasa....angka-angka ini keren banget!!!
Mereka gak menakutkan kayak apa yang kita bayangin.. bener-bener KEREEENN!!!

Ada yang memiliki pola angka keren yang lain?

Keramik

Keramik pada awalnya berasal dari bahasa Yunani keramikos yang artinya suatu bentuk dari tanah liat yang telah mengalami proses pembakaran.
Kamus dan ensiklopedi tahun 1950-an mendefinisikan keramik sebagai suatu hasil seni dan teknologi untuk menghasilkan barang dari tanah liat yang dibakar, seperti gerabah, genteng, porselin, dan sebagainya. Tetapi saat ini tidak semua keramik berasal dari tanah liat. Definisi pengertian keramik terbaru mencakup semua bahan bukan logam dan anorganik yang berbentuk padat.
Umumnya senyawa keramik lebih stabil dalam lingkungan termal dan kimia dibandingkan elemennya. Bahan baku keramik yang umum dipakai adalah felspard, ball clay, kwarsa, kaolin, dan air. Sifat keramik sangat ditentukan oleh struktur kristal, komposisi kimia dan mineral bawaannya. Oleh karena itu sifat keramik juga tergantung pada lingkungan geologi dimana bahan diperoleh. Secara umum strukturnya sangat rumit dengan sedikit elektron-elektron bebas.
Kurangnya beberapa elektron bebas keramik membuat sebagian besar bahan keramik secara kelistrikan bukan merupakan konduktor dan juga menjadi konduktor panas yang jelek. Di samping itu keramik mempunyai sifat rapuh, keras, dan kaku. Keramik secara umum mempunyai kekuatan tekan lebih baik dibanding kekuatan tariknya.
Pada prinsipnya keramik terbagi atas:

1. Keramik tradisional
Keramik tradisional yaitu keramik yang dibuat dengan menggunakan bahan alam, seperti kuarsa, kaolin, dll. Yang termasuk keramik ini adalah: barang pecah belah (dinnerware), keperluan rumah tangga (tile, bricks), dan untuk industri (refractory).

2. Keramik halus
Fine ceramics (keramik modern atau biasa disebut keramik teknik, advanced ceramic, engineering ceramic, techical ceramic) adalah keramik yang dibuat dengan menggunakan oksida-oksida logam atau logam, seperti: oksida logam (Al2O3, ZrO2, MgO,dll). Penggunaannya: elemen pemanas, semikonduktor, komponen turbin, dan pada bidang medis. Dalam penggunaan yang lebih ekstrem, keramik juga digunakan untuk perisai panas pada pesawat ulang-alik.

SYARAT LARUTAN STANDAR

Larutan standar adalah larutan yang disiapkan dengan cara menimbang secara akurat suatu zat yang memiliki kemurnian tinggi dan melarutkannya dengan sejumlah tertentu pelarut dalam wadah pengukur, biasanya yang digunakan adalah labu ukur. Larutan standar yang dipersiapkan dengan cara seperti ini disebut sebagai larutan standar primer.

Bagimana bila kita menyiapkan larutan standar dari zat yang tidak bisa dipastikan kemurniannya?
Contoh disini adalah NaOH, NaOH tidak bisa dipakai sebagai larutan standar primer disebabkan sifatnya yang higroskopis (menyerap air). Dengan kata lain, NaOH menyerap uap air dari lingkungan di sekitarnya. Jadi NaOH terkontaminasi dengan H2O sehingga apabila kita menimbang 1 gram NaOH dipastikan NaOH yang ada kurang dari 1 gram akibat adanya H2O yang sudah diserapnya.

Lalu bagaimana bila kita menginginkan larutan standar NaOH? Alternatif lain adalah dengan membuat larutan NaOH dengan konsentrasi tertentu dan kemudian kita mentitrasinya dengan larutan standar primer asam , contohnya adalah dengan memakai larutan KHP (potassium acid phthalate).
Jadi larutan standar yang disiapkan dengan cara demikian disebut sebagai larutan standar sekunder.

Syarat zat yang bisa dijadikan standar primer :
1. Harus 100% murni.
2. Zat tersebut harus stabil baik pada suhu kamar ataupun pada waktu dilakukan pemanasan, standar primer biasanya dikeringkan terlebih dahulu sebelum ditimbang.
3. Mudah diperoleh
4. Biasanya zat standar primer memiliki Masa molar (MR) yang besar hal ini untuk memperkecil kesalahan relatif atau error pada waktu proses penimbangan. Menimbang zat dalam jumlah besar memiliki kesalahan relatif yang lebih kecil dibanding dengan menimbang zat dalam jumlah yang kecil.
5. Zat tersebut juga harus memenuhi persyaratan teknik titrasi